
Goldstone singularities and critical behaviour in isotropic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 47

(http://iopscience.iop.org/0305-4470/25/1/010)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 25 (1992) 47-63. Printed in the U K  

Goldstone singularities and critical behaviour in 
isotropic systems 

Hans-Otto Heuer 
Theoretische Physik 111, Ruhr-Universitlt Bochum, 4630 Bochum I, Federal Republic of 
Germany 

Received 2 April I991 

Abstract. The critical behaviour along the coexistence curve of isotropic ferromagnets is 
characterized by two diverging correlation lengths since longitudinal and transverse Ructu- 
ations of the order parameter became critical. Therefore, a critical theory valid for the 
whole phase diagram has to incorporate the crossover between a region charanerized by 
one correlation length to another region where two different correlation lengths dominate. 
Treating this crosso~er problem entirely within the framework of the trajectory integral 
method, I have calculated the equation of state and the susceptibilities. It is shown that 
coexistence behaviour is governed by a coexistence fixed point which is characterized by 
the vanishing interaction among the Goldstone modes. Taking the coupling of the critical 
transverse modes to the longitudinal modes into account, it is shown that coexistence 
behaviour is characterized by a Fisher renormalization. This central result sheds new light 
on the symmetry-broken phase in isotropic systems. The asymptotic forms of the equation 
of state and the susceptibilities at the coexistence C U N ~  are expressed by the specific heat 
exponent a, = f for d 2 3 and far all spin dimensions. These results are in perfect agreement 
with the nonlinear o-model. The crossover from coexistence C U N ~  behaviour t o  ordinary 
critical behaviour is calculated for the equation of state and for the susceptibilities to O ( E )  
( c  = 4  - d ) .  

1. Introduction 

The critical behaviour of isotropic n-component systems has attracted theoretical 
interest for many years. A rather complete understanding of ordinary critical behaviour 
in the symmetric phase has been obtained by renormalization group methods. The 
critical behaviour in the symmetry-broken phase is more difficult to understand since 
two correlation lengths diverge at the coexistence curve. These correlation lengths 
correspond to fluctuations longitudinal and transverse to the direction of magnetization. 
The latter are also called Goldstone modes. Their mass vanishes and the transverse 
susceptibility diverges at the coexistence curve; this induces non-analytic behaviour 
into the equation of state and the longitudinal susceptibility near the coexistence curve. 

!x :he !acgiage of criticz! phennmen~ !he coexistence c x v e  is B !ice nf c r i th !  
points where the correlation length of the transverse fluctuations diverges. It terminates 
at the ordinary critical point T = T,, M = 0 which is a kind of bicritical point because 
longitudinal and transverse fluctuations become critical. Thus, a renormalization group 
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(RG) theory of coexistence has to describe the crossover between critical phenomena 
characterized by one correlation length and critical phenomena with two independent 
correlation lengths. This point of view is implicit in most papers on this subject. 

The behaviour of isotropic ferromagnets near the coexistence curve has been studied 
in the framework of spin wave theory by Vaks et al [l ,  21 who extended the Holstein- 
Primakoff formalism to calculate the magnetization and the specific heat of Heisenberg 
ferromagnets with arbitrary spin S. The main result was that the longitudinal susceptibil- 
ity ,yL diverges like H-''2 and that the coupling of the longitudinal and the transverse 
modes, as well as the coupling among the transverse modes, vanishes for small wave 
vectors q at the coexistence curve. The validity of these results was restricted to 
temperatures outside the critical region since these works were essentially mean field 
theories. 

The renormalization group (RG) has been applied to Heisenberg ferromagnets in 
a considerable number of papers using many different technical variants of the RG. 
There have been essentially two different field theoretic models to describe the critical 
behaviour of Heisenberg ferromagnets: the $model and the nonlinear u-model. 

The first works were done on the S4-model by Brezin et a/  [3]. They calculated 
the susceptibilities and the equation of state in an €-expansion around d< = 4 ( E  = 4- d ) .  
They obtained corrections to mean field theory as powers of E In r, where r, is the 
mass of the Goldstone modes which vanishes at the coexistence curve. Unfortunately, 

and the susceptibilities to which these logarithms could be exponentiated. 
Historically, further investigations were performed on the nonlinear u-model. This 

model focuses attention directly on  the Goldstone modes. It was obtained by a 
low-temperature expansion of the partition function of the Heisenberg Hamiltonian. 
Brezin and Wallace [4] have shown within a l / n  expansion that the nonlinear u-model 
and the S4-model should have the same critical behaviour. Further analysis by Brezin 
and Zinn-Justin [5] showed that the behaviour of the nonlinear u-model is governed 
by two fixed points. A trivial one which governs coexistence behaviour and a non-trivial 
one which controls the critical point. Thus, one had a scheme which incorporates both 
regimes and the crossover between them. However, the necessity to perform a low- 
temperature expansion and an expansion around d ,  = 2 was clearly a drawback of the 
nonlinear model. 

The coexistence behaviour in the S4-model was further studied by techniques which 
combine the RG with resummation procedures. Rudnick and Nelson [6] have proposed 
such a technique, the trajectory integral method, t o  treat crossover problems and to 
calculate exponentiated critical singularities. The idea was to renormalize the critical 
system until the fluctuations are small so that Landau theory plus fluctuation corrections 
could he applied. However, this method failed when applied to the coexistence curve 
since longitudinal and transverse fluctuations independently become critical. Therefore, 
Nelson [7] applied a parquet graph summation to obtain exponentiated results which 
incorporate the Goldstone singularities. 

According to Schafer and Horner [SI this procedure did not treat the longitudinal 
fluctuations in the adequate way. Moreover, they claimed that a proper evaluation of 
the perturbation expansion necessitates working with a momentum-dependent four- 
"-:- " ,:_- ̂'-.LA ._ .̂." "- ...->"" P"L'F-. "..A ....-.. rp..,".t;nn ay,,,  Luuy,L,,g U, LIIG L,a,,DYcLJc IIIUUCiJ. .J.,1111,c, ',,I" . I U , . L C .  y L Y y Y a U "  Y .V.IYL.L.L.YI.Y.. 

of renormalized perturbation theory without using recursion relations. Their work was 
based on the results of spin wave theory and of the nonlinear u-model that the 
interaction between the transverse modes vanishes at the coexistence curve. They 

.L̂  -~ I:.....:-.. "-^..-A:> ..̂t &-..-.-:̂I .Le c ..^^ t:,....., ,.FtL~ ~ .̂.- d-.. ,.F^t"t- 
~ i i c  i=uuiuutuLauuu & ~ u u y  YIU iiui ~ u i i i i ~ ~ i  uirj iu i i~ iw i ia i  L U L L U D  UL LMC C ~ U L L L L U ~ I  UL JLCLLC 
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obtained exponentiated results for the susceptibility and the equation of state valid in 
the whole critical region. 

Such an exponentiation was also obtained by Nicoll and Chang [9] who proposed 
a new infinitesimal formulation of the RG. In their method the Goldstone modes did 
not deserve any special treatment. They applied this method to calculate the free energy 
and the equation of state of isotropic Heisenberg ferromagnets in exponentiated form. 

Lawrie [lo] applied another technical variant of the RG, designed for bicritical 
crossover, to the coexistence curve of isotropic ferromagnets. Besides the well known 
critical fixed point, he found a coexistence fixed point which governs Goldstone 
behaviour and was able to describe the crossover between these fixed points. 

To summarize, the critical behaviour at the critical point and along the coexistence 
curve seems to be quite well understood. The S4-model, as well as the nonlinear 
u-model, leads to a two-fixed-point scenario; however, the results obtained in the 
expansions around d,= 2 and d, = 4 respectively cannot be compared. The results 
obtained by RG methods [j-iirj are in accord with the ciassicai theory and agree with 
each other at least in essential limits such as the spherical limit. However, apart from 
some limiting cases the detailed results are hard to compare due to their mathematical 
complexity. 

In this paper I show that the aspect of two diverging correlation lengths is crucial 
to an understanding of coexistence behaviour. This aspect has not been incorporated 
carefully enough in previous works [3-101: on the one hand the nonlinear n-model 
strips off the longitudinal fluctuations and focuses on the Goldstone modes directly. 
On the other hand, RG studies of the S4-model did not adequately treat the interaction 
between both types of fluctuations. 

In this paper I use the trajectory integral method to calculate the equation of state 
and the susceptibilities in the S4-model. I point out that a different technical variant 
of the RG such as the differential generator [9] should lead to the same results. The 
idea is a simple but necessary extension of the ordinary renormalization scheme: the 
renormalization of the complete system is performed until the longitudinal fluctuations 
are non-critical; subsequently the longitudinal modes are eliminated i n  the partition 
function by integration of the longitudinal modes. This leads to an effective Hamiltonian 
for the transverse modes with renormalized coupling parameters; this effective Gold- 
stone system is further renormalized until the transverse fluctuations become non- 
critical too. 

The results of this approach provide a link between the results of the nonlinear 
u-model and the S4-model. The basic results of the nonlinear u-model concerning the 
longitudinal susceptibility and the equation of state are reproduced. As the central 
result I show that the Goldstone behaviour appears as an excellent example for Fisher 
renormalization by hidden variables [ l l ] .  The physical origin of the Fisher renormaliz- 
aiiaii is thai transverse 
modes at the coexistence curve. The interaction among the transverse modes is shown 
to vanish at the coexistence curve. As a result of both effects Fisher-renormalized 
Gaussian behaviour dominates at the coexistence curve. 

In section 2 the trajectory integral method is briefly explained. The full S4 Hamil- 
tonian is renormalized until the longitudinal modes are noncritical. In section 3 this 
partly renormalized S4 Hamiltonian leads to a Hamiltonian for the ( n  - I)-dimensional 
Goldstone system. This Hamiltonian is further renormalized until the Goldstone modes 
are non-critical too. The matching conditions are evaluated in section 4 and the 
susceptibilities and the equation of state are derived in exponentiated scaling form. 

s ~ l ;  c f i~ i a :  kui ioiip:ed io the ;ongiiudinai 
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Section 5 focuses on the coexistence curve and derives the coexistence curve sin- 
gularities from the general equations of section 4 .  The asymptotic form for the suscep- 
tibilities and the equation of state are calculated and discussed. 

2. The method 

The starting point is the usual Ginzburg-Landau-Wilson Hamiltonian in its O ( n )  
symmetric form given by 

with n-component spins S and a cutoff A in the momentum integrals. The coupling 
parameters are r - f = ( T -  T J /  T, and the S4 coupling U. The latter is usually assumed 
to be independent of the temperature and the magnetic field in the critical region. H 
is the internal magnetic field which couples to the q = 0-component SA in the 1-direction. 
The free energy density is given by 

(2.2) 

where V- is the voiume of the system. One may convenientiy introduce the shiited spin 
variables U: in the usual way [ 3 , 6 , 7 ]  

S A = M + u :  s: = a: ( 4 f O )  (2.3) 
where M is the magnetization given by the vanishing expectation value (U:) = 0. The 
shift (2.3) leads to the Hamiltonian, which reads in short notation, 

@(u,sJ= -!rLu2--frTISL12- w,uI~ , j*-  w2u2 

- u ~ ~ s ~ ~ ~ - u 2 u 4 -  U 3 U 2 ~ S J + f i U ~  (2.4) 

with the coupling parameters 

r L = r + 1 2 u M 2  rT= r+4uM2 

w, = wz = 4uMi 

U ,  = U > =  U u , = 2 u  

fi = H -  rM -4uM' 

The idea of the trajectory integral method is to renormalize a system until it is 
non-critical. During the renormalization one sums up the regular parts of the free 
energy which are produced at each renormalization step [ 6 ,7 ] .  Applying the trajectory 
integral method to the Hamiltonian (2.41, one is lead to the free energy 

(2.6) ) e-dl d/+e-"* - F ( / * )  
r 
2 F = -  M ~ + U M ~ - H M +  G1(rL(/), IT(/), . . . 

where the first terms result from the shift (2 .3) .  The integration term is the integrated 
free energy resulting from the renormalization. The integration kernel Go. which 
includes longitudinal as well as transverse fluctuations, is given by 161 

e,,(/) = i ( n  - 1)K, In(rT(/) + 1) + iK ,  In(r,(/) + l)+O(u(l)) .  (2.7) 
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with the isotropic integration kernel Go(/) =in& In(r(/)+ 1) .  Indeed, Nelson has 
obtained the same result for the free energy by a renormalization of the Hamiltonian 
(2.4). The first term in (2.12) is equal to the free energy of the system in the disordered 
phase. The last two terms are peculiar to the ordered phase. 

The most important part of the free energy F (2.12) with respectLo coexistence 
behaviour is the free energy i(/*) of the partly renormalized system % ' ( I * )  

(2.13) 

Section 3 will be mainly concerned with the calculation of this part of the free 
energy. A simple mean field argument shows that the evaluation of p(l*) (2.13) by 
Landau theory plus fluctuation corrections fails at the coexistence curve: according to 
the original concept of the trajectory integral method the renormalized system is 
matched with a non-critical theory at some I* where fluctuations are non-critical. If 
one chooses I* in analogy to the symmetric phase such that the longitudinal fluctuations 
are non-critical (rL(I*) = 0 ( 1 ) ) ,  then (2.10) leads to 

MZ(/*) = ( - r ( /*) /h( /*))  (2.14) 

on the coexistence curve ( H  = 0) neglecting fluctuation corrections. Inserting this mean 
field result for M (  I * )  into the solution of rT(l*) (2.10); one realizes that the renormalized 
transverse fluctuations are still fully critical at /* near the coexistence curve: 

I T ( / * )  = r( I*)+4u( l * )M2(  I * )  = 0. (2.15) 

Thus, one cannot apply Landau theory to the transverse fl!ctuations in %'(I*). In  his 
paper Nelson applied the parquet graph summation to X( l* )  to sum up the most 
divergent Goldstone contributions to the susceptibilities and to the equation of state [7]. 

3. Renormalization of the Goldstone modes 

The renormalization of the longitudinal modes has been performed in section 2 up to 
!he m ~ t c h i n g  poin! !* where the !ongi!udina! modes are non-critica! (rL(l*) = O(1)). 
We now proceed to renormalize the critical Goldstone modes contained in *(/*) until 
they are non-critical at some matching point 1. To perform the renormalization of the 
Goldstone modes in * ( I * ) ,  it is necessary first io integrate the non-critical longitudinal 
modes in the free energy (2.13). To this end %'(u,SL; I * )  is split into 

*(U, s,; I * )  = 9t0(u)+ %o(s,)+ *(U, S,)  (3.1) 

with the Gaussian parts 

*o(u) = - $ r L ( / * ) u 2  * o ( ~ , )  = -irT(I*)ls,l2 (3.2) 

and the interaction 

*(V, S,)  =-w,(l*)ulsL12- w*(1* )u~-u, ( / * ) IsL14-uu2(1* )u4 

- U 3 ( / * ) U 2 1 S J +  &/*)U (3.3) 

using the short notation, without momentum-dependencies. The Feynman-graph 
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expansion of k(l*)'(2.13) with respect to the interaction &(r, S,) leads to 

k ( l * ) = - m l n [  Is, exp(&dS,)) exp((e"'"s~'-I)o,) exp(-V(l*)AF, I 1 

-. -. 1 rl.L 7 U 1  h c rr. (3.4) 

AF,is the part of free energy resulting from the integration of the longitudinal modes 
in 41"(u,S,; I * )  only. Since they are non-critical, AF, can he calculated by Landau 
theory plus leading fluctuation corrections: 

+ o ( u , ( l * ) ,  w : u * ) )  (3.5) 

where U,(/*)= w:( l*)=O(u( l*) )  is used, which follows from (2.10), (2.14). The first 
two terms in (3.5) are zero-order terms, and the last one is the leading fluctuation term 
from graph ( a )  in figure 1. 

Figure 1. Graphs relevant for the Feynman graph expansion of the free energy ?(f*J in 
equation (3.4j. Graph ( u j  is the first non-triviai coniribution io ihe iniegrsiel Free energy 
AF-; graphs (bj-(dl  contribute to the effective S: interaction and (el  contributes to the 
effective S: interaction in O(z, U). 

The effective Hamiltonian $?in (3.4) describes the critical Goldstone modes in the 
presence of non-critical longitudinal modes. It is derived in O(u( l*) ,  w2( l* ) )  from the -~ graphs ( b ) - ( e )  in figure 1. Graphs ( b ) - ( d )  contribute to the effective !S,l' vertex and 
( e )  contributes to the effective ISL\' interaction. One obtains 

&(S, )=  - ~ ? ~ s ~ ~ 2 - ~ l s J  (3.6) 

with 

and 
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GL is the integral over the longitudinal propagator at I* :  

(3.9) 

where the integral is performed- over the whole momentum sphere O S l p J s h .  The 
resultingeffective Hamiltonian X depends only on the ( n  - 1)-dimensional Goldstone 
modes. X has the same symmetry as the original n-dimensional Hamiltonian X (2.1) 
before renormalization of the longitudinal modes. However, the coupling parameters 
have changed markedly due to the fact that the critical Goldstone modes are coupled 
to the non-critical longitudinal modes. This coupling is responsible for the Fisher 
renormalization which will become visible below when the new coupling parameters 
afe expressed in terms of the original parameters of X (2.1). The effective Hamiltonian 
X (3.6) of the Goldstone system may now be renormalized in the usual way. The 
trajectory integral method may be applied to integrate the free energy F (3.4) of this 
( n  - 1)-dimensional S4-model. The recursion relations for ? and I? that have to be 
solved are those of the S4-model with the spin dimension n - 1. Thus, one obtains the 
same solutions (2.11) but for the effective temperature scaling field 

f=F+$A2c (3.10) 

and the effective coupling parameter U  ̂ with L = 4 ( n + 1 ) K 4  and h=4(n+7)K4.  f i s  
called effective temperature since it is the relevant scaling field in the Goldstone system. 
However, it will be shown below that f is not a temperature difference like f but a 
distance from the coexistence curve in the M - T  phase space. T h e  free energy F of 
the Goldstone system is readily obtained as 

fi=10i6,(/) e-dfd/+e-dif i ( f )  (3.11) 

where 6, i,s the integration kernel of the ( n  -1)-dimensional Goldstone system. 
Obviously I isAchosenAin such a way that the renormalized Goldstone system is 
non-critical at I, i.e. ; ( l )=O(l) .  Combining the result (3.11) and (3.4) with the free 
energy F (2.12) one obtains the complete free energy of the S4-model (2.1) as 

F = 1,'. Go(/) e? dl+e-d'* - M2(1*)fu(/*)M4(/*)- H(/*)M(l*)] 
[r(:)  

i 
+e-d" lo,&/) e-d'd/+e-df* AF .r +e-d"*+i'fi(i). (3.12) 

The free energy F (3.12) is easily calculated in terms of the coupling parameters r, U 
and H P f  the Hamiltonian X (2.1). To this end the matching conditions r L ( / * )  = 0 ( 1 )  
and ? ( I )  = O( 1) have to be evaluated. However, we focus the attention on the magnetic 
properties here, leaving the caloric properties for a separate paper. 

The susceptibilities and the equation of state follow from the transformation (2.8) 
of the magnetization. The magnetization at the matching point M ( / * )  has to be 
calculated from the condition (U;)=?. The usual procedure to calculate M ( / * )  would 
be a Feynman graph expansion of %(U, S,)  [3]. This would lead to the logarithmic 
terms like In rT( I * )  with prefactors of O ( E ) .  This calculation would lead to unexponenti- 
ated results for the equation of state and for the susceptibilities very similar to the 
original Feynman graph expansion by Brezin et a1 [3]. In this paper 1 make use of 
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the fact that J ? ( l * )  is the source termfor U: in the Hamiltonian %(/*) (3.3); thus (U;) 

can he calculated as a derivative of F ( / * )  (3.4): 

(3 .13)  

As shown in (3.4), e(/*) consists of two parts: the contribution of the longitudinal 
modes AF- only and the free energy A* of the effective Goldstone system. The derivative 
of AF, follows from (3.5) as 

(3.14) 

where we have explicitly noted the dependence of G, on rL( /* ) .  
A(/*) in a simple way via ?, so that one obtains 

(3 .11)  depends on 

(3.15) 

is the energy [6,12] of the effective Goldstone system, defined as the temperature 
derivative of the free energy 

Likewise, the specific heat of 2 (3.6) is defined as 

(3.16) 

(3.17) 

Combining equations (3.14), (3.15) with (3.13), one is led to the equation of state of 
the isotropic S4-model 

H(/*) - r ( / * ) M ( / * )  -4u(l*)M3( /*) 

= 12u(/*)M(l*)GL(r,(l*))+8u(l*)M(l*)&(f, I?) (3.18) 

where I have inserted the definition of k ( / )  and w , ( / )  (2.10). The first term on the 
RHS of (3.18) is the fluctuation correction of the longitudinal modes in the Landau 
regime r L ( / * ) = O ( l ) .  In the case of an king system ( n  = 1) this term is the only 
contribution to the equation of state [6 ] .  The second term includes all contributions 
of the critical Goldstone modes to the equation of state. From (3.18) one can derive 
the susceptibilities ,yL and xT using the transformation (2.9) of the susceptibilities. The 
transverse susceptibility ,yT( /* )  at the matching point I’ is simply given by 

(3.19) 

and the longitudinal susceptibility follows by differentiation of the equation of state 
(3.18) as 

= r( I * )  + 12u( I * )  M 2 (  I * )  + 12u( /*)G,( rL( I * ) )  + Su( /*)E( ?, I?) 

+64u2(/*)M2(l*)e(?,  I?) (3.20) 
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where again (2.10) is used. I point out that the results (3.18)-(3.20) do not contain 
logarithyic divergences from the Goldstone modes. They are exponentiated in the 
energy E ( ? ,  G) and the specific heat C(?, I?) of the effective Goldstone modes in a very 
natural way. 

4. The susceptibilities and the equation of state 

In order to extract physical results from (3.18)-(3.20) and from the transformation of 
F and 6 (3.71, (3.8), the matching parameter I* has to be eliminated from the matching 
condition. Beforehand, it is sensible to introduce the abbreviations 

T,(/*) := t ( / * ) + 4 u ( / * ) ~ ' ( I * )  = rT(/*) +o(u(f*)). 
Both 'temperatures' may be interpreted as critical distances in the M-T phase diagram. 
TL(/*) =/-2f(/*)/ (see (2.14)) is the renormalized temperature distance, whereas TT(/*) 
is identified as the distance from the coexistence curve using (2.14). Both quantities 
are related to the relevant scaling fields f (2.11) and f (3.10) respectively: below T, 
the relevant scaling field is i, it vanishes at the coexistence curve. Above T, and for 
H = 0, f = ( T -  TJ/  T, is the only relevant scaling field vanishing at T,. Thus, the 
critical point T =  T,, H = O  is a bicritical point since f as well as ? vanish there 
independently. 

As stated above, the matching parameter I* is fixed by the condition that the 
longitudinal fluctuations become non-critical. This is obviously satisfied by TL(/*) = 1 
which is equivalent to rL(/*) = 1 up to terms of O ( u ( / * ) ) .  

The integral GL (3.9) over the longitudinal propagator, which occurs in equations 
(3.18)-(3.20), is easily evaluated: 

(4.2) 
1 K4 

=- ( A 2 +  rl(/*)[ln rL( I*)-ln(rL(l*)+A2)]). 

Since rL(/*) = o(l) ,  this constant fluctuation correction term ma,y be neglected as it is 
unimportant compared to the non-analytic terms E ( ? ,  G) and C(f, G) in the equation 
of state and the susceptibilities (3.18)-(3.20). Thus, one obtains from (3.18), (3.19) 

(4.3) 

0-1 rhn in.ierra t....m:+..A:..~l ~..~na..+:L:l:+~, ( 2  I n \  :- a.,st,.m+aA - S .  
all" L l l L  I . l " C 1 0 L  1""~1L"Y"1LL1 """'bp,,",,.LJ {-'.L", ,a C I P I U L L L b Y  -1. 

,y;'(l*) = 1 +8u(/*)E(f,  ~ ) + 6 4 u 2 ( 1 * ) M 2 ( I * ) ~ ( ~ ,  U^) .  

, y L ( I * ) = ~ - 8 u ( / * ) i ( i ,  ; ) - s u ( / * ) ( l - T , ( / * ) ) e ( i ,  G) (4.5) 

(4.4) 

Inverting this result, one obtains to leading order in U(/*) 

where (4.1) has been used to eliminate M ( / * ) .  It will be shown below that near the 
coexistence curve the specific heat term dominates since it has the strongest singularity. 
It is interesting that this relation between the longitudinal susceptibility of an isotropic 
n-component spin system to the specific heat of a ( n  - 1)-dimensional system has been 
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established in the nonlinear u-model too. The equationpf state (3.18) may now be 
inserted into the transformation (3.7) for i to eliminate H ( / * ) :  

(4.6) 

which leads to the effective scaling field f (3.10): 

t^= TT( /*)+64u2( I* )M*( /* )E(  f, U*) 

= TT(/*)+(l - TT(/*))8u(/*)&(?, U*). (4.7) 
The effective interaction U^ is given by (3.8). It depends, in principle, on momentum 
q,  + q2 via the integral over the propagator GL1(rL(/*)). However, standard scaling 
arguments on irrelevant variables [ 13,141 prove that the momentum-dependent part 

dependent part of the S'-operator is irrelevant in S4-theory. The effective interaction 
(3.8) can be written as 

of this Sf-interaction is ime!evant in very mxch the same way as the mnmentum- 

if one uses the definitions (4.1) as well as the matching condition TL(/*) = 1. Equations 
(4.7) and (4.8) show that the effective temperature ? and the interaction U* depend on 
the relative magnitude of the distances TL(/*)  and TT(/*) in the M-T phase diagram. 
Ordinary isotropic critical behaviour is characterized by TT(/*) 2 - T,(/*) = 1. This 
case is less interesting since transverse as well as longitudinal modes become non-critical 
at I*. In this limit the interaction U^ (4.8) is simply U(/*) and the effective temperature 
? (4.7) is equal to TL(/*) = 1 so that a special renormalption of X as in section 3 is 
not necessary. The energy .~ and the specific heat C then simply reduce to the 
corresponding expressions given by Landau theory plus fluctuation corrections. 

However, the renormalization of the Goldstone system performed in section 3 is 
designed to treat the interesting region near the coexistence curve where the transverse 
modes are critical. One can see from (4.8) that the interaction t? among the Goldstone 
modes depends on the ratio of the 'transverse temperature' TT( /*) and the 'longitudinal 
temperature' TL(/*). Thus, it depends on the position of the system in the M-T plane. 
It vanishes at the coexistence curve since TT( I*) goes to zero. This vanishing interaction 
is a well known feature of Goldstone behaviour and has been obtained by spin-wave 
calculations [ I ,  21 and in the nonlinear u-model [4, SI. It is satisfactory that this feature 
naturally appears in this treatment. 

Since U* vanishes at the coexistence curve it is convenient to make use of the energy 
&( i, t?) and the specific heat C( t, U * )  in tricritical scaling fields, in order to extract the 
leading f-singularity relevant near the coexistence curve. The crossove~ CaiCulations 
in the disordered phase for the (n - I)-dimensional isotropic system Z' (3.6) led to 
[6, 121: 
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with the tricritical crossover function 

(4.10) 

Equations (4.91, (4.10) describe the crossover between the tricritical and the critical 
singularities inherent in the S"-model. The first term in (4.9) is the leading regular part 
of the energy. The second term is the singular part written in explicit scaling form with 
the tricritical temperature scaling field 

and the scaling variable 

&=1;2(1 -;2)+J+<;-+r (4.12) 

& and +t are the crossover exponents of the critical and of the tricritical fixed point 
of the ( n  - I)-dimensional S4-model. Since i2 = GIG* = 4(n f 7 )  K 4 G / ~  is much smaller 
than 1 near the coexistence curve, one may use the simplified expression 

(4.13) 

instead of (4.9). However, if one is interested in the crossover from Goldstone behaviour 
to isotropic critical beha<our, the full expression (4.9) has to he used. 

Inserting the energy E into the equation for the effective temperature f (4.7) one 
realizes that the singular term ?'--, with the tricritical exponent of the specific heat 
n , = ~ / 2  dominates for TT(l*)<< 1.  This becomes evident when one rewrites (4.7) in 
the form 

f+ TT(l*)8u(I*)l?(f, U^) = TT(l*)+8u(l")g(f, 2). (4.14) 

The terms on the RHS are of O(f'-=&) whereas those on the LHS are of O(?, f2-'"~). 
Near the coexistence-curve (TT(l*)<< 1, fcc 1 )  (4.14) reduces to the simple relation 

?+(I* )  - f ' - m p .  (4.15) 

This result explicitly shows that the effective temperature i of the Goldstone system 
is Fisher renormalized with respect to the 'temperature' TT(I*) of the transverse modes 
in the original renormalized Hamiltonian (3.1)-(3.3). I point out that the LHS of 
equation (4.14) is negligible for f<< 1 only, leading to TT( I * )  - ;'-"b. In order to describe 
the crossover to isotropic critical behaviour one has to take all terms into account. 

After this discussion of the effective coupiing parameters of the Goidstone system 
and their relation to the original coupling parameters of the Hamiltonian (3.1)-(3.3), 
one may eliminate the I* dependence from the above results in the usual way [6,7,121. 
The matching condition TL( I*) = 1 can be written as 

(4.16) 

using the abbreviation m = J4uf M and h =a H .  In order to normalize the equation 
of state below in a proper way, it is convenient to introduce normalization factors 

I =  at m = & m  6 = c h .  (4.17) 
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Inserting the solutions t ( l * )  and u ( l * )  (2.10) and the transformation of the magnetiz- 
ation m ( l * )  (2.8) into (4.16), one obtains 

(4.18) 

with 

Z = 1 +g2, exp(yJ*)  (4.19) 

where I have used the nonlinear critical scaling fields introduced by Riedel and Wegner 
[15]: 

(4.20) 

yIc, y,, are the exponents of these scaling fields, given by 

A 
B y,,= 2--& Y,, = --E y, =2--E (4.21) 

and y, is the exponent of mz. It has been shown in previous works that the function 
i = e "  shows scaling behaviour [6,12]. i can be written in the form 

(4.22) Lislc, m, g2J = m-'iymL(cc, c, j 
with the scaling variables 

& = g,,m-YIJY. g , , m - ' / B .  c, =g2,mY1.'Y,=g2EmddP., (4.23) 

From (4.18) one obtains the equation for the scaling function L, defined in (4.22): 

(4.24) 

with Z = 1 + c,Ly'.. Note that Z = 1 for a system at the fixed point U = U*.  Equation 
(4.24) is a transcendental equation for L(&,  c , )  which has to be solved numerically 
if one is interested in the complete crossover. An analytical discussion is possible in 
the tricritical and critical limit and in some regions of the M- T phase diagram. TT( I*) 
(4.ij is obtained performing the same caicuiations as for iL(i*j above: 

(4.25) 

Combining this result with equation (4.14), one obtains the effective temperature i in 
terms of the scaling variables 6, and c,: 

The fixed point value U *  appears in (4.26) because of the normalization f i ,  = u f U * .  

Equation (4.26) is a transcendental equation for ?(gc,c, , ,)  which must be solved 
numerically in general. It describes the dependence of the effective temperature of the 

from (4.8) as 
&!&!efie system ofi the sca!ifig variab!en &and_ cm. effec!ive cacp!ifig L, fo!!c\yr 

(4.27) 
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This equation shows that the effective coupling depends on the scaling variables 5, 
and c,,, (4.23). Equations (4.9), (4.10) show that the energy E depends on the crossover 
variable &. This variable has to be calculated from c2 (4.27) and i (4.26), if one is 
interested in the crossover from coexistence curve behaviour to isotropic critical 
behaviour. 

Performing the same manipulations as above with equations (4.3) and (4.9, one 
obtains the general crossover results for the equation of state and the susceptibilities: 

(4.28) 

(4.29) 

(4.30) 

In the last equation I have used the well known relation 6 = s/ i [6,12].The complexity 
of (4.28)-(4.30) together with the transcendental equations for L (4.24) and ? (4.26) 
does not make these results very attractive. However, one has to recall that these 
equations describe the critical behaviour of a system with arbitrary S4-coupling U in 
the whole M-T phase diagram. 

5. Coexisteuce behaviour 

In order to discuss the behaviour near the coexistence-curve, it is convenient to restrict 
the analysis to the case U = U * .  In this case the system (2.1) is at the Heisenberg fixed 
point and the crossover with respect to U is eliminated. This is the situation described 
in previous papers [3-IO] on the subject. 

Near the coexistence curve the results (4.24)-(4.30) simtlify since only the leading 
powers of i are important for r̂ .c 1. Inserting the energy E (4.13) into the equation 
for the effective temperature i (4.14), one gets 

For fc< 1 the denominator can be ignored and the leading term is thesingular term of 
the energy. Thus, for f ~ c  1: 

up to terms of order f-"~. This equation explicitly shows that the critical distance 
TT(l*) (4.1) is related to the temperature ? o f  the Goldstone system (3.6) by a Fisher 
renormalization. The physical origin for this Fisher renormalization is the coupling of 
the critically fluctuating transverse modes to the non-critical longitudinal modes in the 
Goldstone regime. The general results (4.28)-(4.30) become very simple now. Inserting 
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(4.13) as well as (5.2) into (4.28), one is led to the equation of state at the energy 
the coexistence curve 

The transverse Susceptibility (4.29) is given by 

(5.3) 

(5.4) 

and the longitudinal susceptibility (4.30) is evaluated in the same way observing that 
the term E/? ,  i.e. the specific heat e = f?"cFo(Z,) at the Gaussian fixed point, dominates 
for i C C  1: 

This result can he nicely compared with the result of the nonlinear u-model [4,5]. In 
these works it has been shown that the fluctuations of the longitudinal mode ,yL are 
related to the fluctuations of the transverse modes at their trivial fixed point by 

xL= ddx( f S%x) 1 S:(O) . (5.6) 

Since the RHS of (5.6) is the specific heat of an ( n  - 1)-dimensional spin system, equation 
( 5 . 5 )  perfectly agrees with the result of the nonlinear u-model. 

The equation of state and the transverse susceptibility near the coexistence curve 
have a very simple structure too. They correspond to a system with temperature scaling 
field f and vanishing interaction ii. The result that the interaction U* vanishes at the 
coexistence curve is verified directly from (4.27), inserting the leading singular term 
of (5.2) into (4.27): 

t=2  ) 

1 - 0 ,  

n + 8  (5.7) 

where the equation of state (5.3) has been used to replace i. Equation (5.7) explicitly 
shows that the coexistence curve is governed by a trivial Gaussian fixed point where 
the $-interaction f i2  vanishes for h -* 0. Hence, the critical dimension is determined 
by the $-operator to give d,= 3 as in tricritical phenomena. Thus, the results concern- 
ing coexistence behaviour derived in this work are exact ford  2 3 for all spin dimensions 
n. This feature compares well with the works on the nonlinear u-model, which arrive 
at the same result [4,5]. A coexistence fixed point of Gaussian character has also been 
found by Lawrie in his RG analysis of the S4-model [lo]. He also concluded that his 
results concerning the coexistence curve should be exact. However, with his renormaliz- 
ation scheme he did not discover the mechanism of Fisher renormalization of Goldstone 
behaviour by the longitudinal modes. 

The above results (5.3)-(5.5) can be cast into the usual form by an appropriate 
normalization according to (4.17). The crossover variable Ct (4.12) which enters the 
crossover function Fo in the above results is given by 

n+8 n + 8  
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The equation for the scaling function L (4.22) assumes the simpler form 

(5.9) 

since Z = 1 for U = U*. Thus, the equation of state in the Widom scaling form is obtained 
from (5.2) and (5.3) as 

where Fo= O(1) is the limit h + O  ofthe crossover function Fo(C,). One may now choose 
the normalization (4.17) in such a way thatf(&= -1) =Oandf(&=O)= 1. In addition, 
I choose L(&= -1) = 1 so that the scaling function L (5.9) is unity on the coexistence 
curve: ( ;)VY," [ - - 1 F a j i i i i - ~ , i  

a = 2  b = 2  c = &  - (5.11) n +8 

With these normalizations one obtains 
h lifl-a,l 

-- m'c- [ 1 + 1 ]  m l l &  (5.12) 

as the equation of state near the coexistence curve. Likewise, the transverse susceptibility 
follows from (5.4) as 

and the longitudinal susceptibility follows from (5.5) as 

so that one obtains 

near the coexistence curve. Equation (5.14) may also he expressed as 

(5.13) 

(5.14) 

(5.16) 

As mentioned above, the results (5.12). (5.13),  (5.15) for the functional form of the 
equation of state and the susceptibilities near the coexistence curve do not depend on 
the spin dimension n and are exactly given by the specific heat exponent a,=& for 
d a 3 .  The functional dependence (5.12) y = ( x + l ) '  of the scaled magnetic field 
y = hm-'= on the scaled magnetization x = trK1/ '  has been conjectured in early RG 
works on the S4-model [2,3] and has been confirmed by works on the nonlinear 
u-model [4,5]. Lawrie has confirmed this result within the S4-model in the spherical 
limit n-CO. Equation (5.12) verifies this result for arbitrary spin dimension n and 
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shows that L = 1/( 1 -4 = 2 for d 3 3 which is in perfect agreement with the nonlinear 
u-model. However, for d = 3 one may include logarithmic corrections if necessary. 
The longitudinal susceptibility (5.14) has the expected form too. The dominating term 
near the coexistence curve is the non-analytic one which diverges as H-"' for d 3 3  
(5.15), in accord with the nonlinear u-model. One may derive from (5.14) a condition 
for the observation of Goldstone singularities. The Goldstone term in (5.14) has to be 
distinctly larger than the constant term which describes the isotropic critical behaviour 
nP-r r mir inorlo t- th- ---AX-- 
..b.LII '<. 1.11.7 lLPYl  L" U.C CUI,"ILI"I' 

h 1 n - 1  0.006 for n = 2 
m6* 2 0.024 for n = 3. 
- < - ( T ) 2  = [ (5.17) 

It is obvious that a proper identification of Goldstone singularities is possible only in 
a small regime around the coexistence curve. Measurements in this regime are difficult 

~ , , ~ ~ i ~  nanr+r hnr-.,.n i_.._.+n-+ c..dh----o ..-:..-. _--.. :- _ _ - I  c- ----"-- ..to 
and dipolar interactions have to be included in the theoretical description. The method 
presented in this paper seems to be well suited to treat these problems. 

I . L . C I  Y".I.YII. C l L b l L . 3  "*C.".llL. " l . p Y . L Y L , L .  I " L L . L C I I I I U L C ,  arrrruuvy)r 111 , G O A  ,CL,UL.'a&,LC," 
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